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Abstract A composite vield tuncuon is used to describe the behavior of plain and reinforced
concrete m biaxial stress under monotonic loading conditions: A Rankine yield criterion is used to
monitor the in-planc tensile stresses and a Drucker Prager yvield tunction controls the compressive
stresses. A good agreement with experimental data for biaxial stress conditions in concrete can thus
be obtained. The approach is parucularly powerful for the numerical analysis of concrete structures.
cither plain or reinforced. which are predominantly in tension compression biaxial stress states.
Initiation of crucking in such areas frequenty leads to brittle. uncontrollable failure (splitting
cracks). which can often not be handled by existing approaches. The proposed Euler backward
algorithm based on the composite vield function and enhanced by a consistent linearization of the
integrated stress strain refation for use within a Newton Raphsen method at the structural level.
is extremely robust for this particular class of problems

INTRODUCTION

The proper modeling ol tension-compression biaxial stress states in plain and reinforced
concrete is an outstanding issue in finite element analysis of concrete structures that is of
utmost practical importance and very challenging at the same time. It is important for
engineering practice. since such stress states frequently occur in critical regions and crack
initiation under such stress conditions often acts as a precursor to progressive and brittle
collapse of concrete structures. Examples are shear-critical beams in the case of reinforced
concrete and splitting tests in the case of plain concrete structures. The proper modeling of
this phenomenon is challenging because different inelastic mechanisms play a role under
such stress conditions. For instance. it one adopts a crack model to bound the tensile stresses
and a plasticity model to monmitor the evolution of the compressive stresses, simultaneous
satisfaction of a fracture criterion and a vield function must be achieved.

In the first applications of finite element analysis to the mechanical behavior of concrete
a sudden drop to a zero stress level was adopted upon violation of the tensile strength
(Rashid. 1968). Similarly. it was assumed that concrete lost its complete strength and
stiffness when the compressive strength was exceeded. Soon. careful experiments using
servo-controlled equipment revealed that this crude assumption did not resemble the real
behavior of concrete. since a descending branch was observed in tension (Risch and
Hilsdorf. 1963 : Hordijk. 1991) as well as in compression (van Mier. 1984 Willam et al.,
1986). For this reason “softening™ stress strain relations were adopted, in which the stress
was made a descending function of the strain and the element size such that the total
energy dissipation upon complete failure became independent of the finite element mesh.
(Pietruszczak and Mroz. 1981 Buzant and Oh. 1983 Willam. 1984). It is recognized that
this “energy” approach gives in an ill-posed boundary value problem. which tends to result
in crack propagation that is biased by the grid lines of the discretization (Sluys, 1992 de
Borst er al., 1993). Nevertheless. the method is used here because it is simpler than proper
regularization procedures like non-local or gradient approaches [for a review of these
procedures. see de Borst ¢r «f. (1993)]. so it can readily be used for obtaining practical,
engineering solutions. s simplicity also bears the advantage that attention can be focused
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on the difficulty that during progressive softening a fracture criterion for the tensile behavior
and a vield function for the compressive softening behavior have to be met identically.

In the approach by de Borst and Nauta (1985), this issue was solved using a local
procedure at integration point level in which cracking and plasticity were treated in an
iterative fashion. such that during the computation of the plastic flow the cracking strain
increment was treated as an initial strain increment, and subsequently the fracture strain
increment was updated while freezing the computed plastic flow increment, etc. Although
this procedure has been applied successfully in a number of calculations, numerical diffi-
culties with state changes have also been reported (Crisfield and Wills, 1989), especially in
plane-stress situations.

In this contribution we shall discuss a composite yield function, in which the behavior
in compression as well as that in tension is modeled using a plasticity approach. A Rankine
(principal stress) yield criterion is used to limit the tensile stresses and a Drucker-Prager
yield contour is employed to model the compression—compression regime in biaxial stress.
It turns out that this composite vield contour closely matches the classical Kupfer and
Gerstle data (1973). The fact that both tensile and compressive failures are now modeled
using a plasticity-based concept has the advantage that the “corner” regime, that is where
both yield contours intersect. can be handled using established concepts from computational
plasticity (de Borst, 1986; Simo et «l.. 1988). Using the Koiter (1953) generalization for
plastic flow at a corner in the vield contour. a robust Euler backward integration algorithm
can be devised, including the associated consistently linearized tangent stiffness matrix for
use within Newton’s method.

A drawback of the plasticity-based approach is that the stiffness degradation due to
progressive damage is not modeled. However, experimental evidence shows that the stiffness
degradation due to tensile cracking is substantial only when the tensile cracking has
developed fully (Willam er al.. 1986: Hordijk. 1991). The stiffness degradation due to
compressive loading is even less pronounced than the stiffness degradation due to tensile
loading. Since full cyclic loading is not considered in this study, only monotonic loading
where only local unloading occurs, neglecting the degradation of the elastic stiffness does
not seem to entail major errors.

We shall start this paper by formulating the composite yield surface. Then, we will
discuss the behavior of plain concrete, thereby focusing attention on the softening behavior
in tension and in compression. The equivalent uniaxial stress—strain relations for tension
and compression that have been adopted are discussed. In both cases a fracture energy has
been defined in order to achieve a reasonable degree of discretization insensitivity in
numerical calculations. Next. the algorithmic aspects of the model are discussed and the
derivation of the linearization moduli will be given. Some illustrative examples of a splitting
test and reinforced shear wall panel conclude the discussion.

[t is recognized that plasticity-based crack models have been advocated before [e.g.
Willam and Warnke (1975) ; Chen and Chen (1975) ; Buyukozturk (1977) ; Murray et al.
(1979)], but the present enhancements with a second fracture energy parameter that controls
the (gradual) compressive softening and the robustness of the algorithm presented here are
considered to be major steps forward.

FORMULATION OF A COMPOSITE YIELD SURFACE

In this study. we shall utilize a composite yield contour which bounds the admissible
stress states such that a Rankine yield function, denoted as £}, is used to model the tension-
tension region and a Drucker-Prager yield function, say f,, is employed to bound the
compressive stresses. The model will be formulated in a plane-strain configuration and the
plane-stress condition, o.. = 0. will be enforced by applying a compression/expansion
algorithm (de Borst. 1991). In this algorithm, the strain vector is expanded by including
the normal strain in the constrained direction in the beginning of an iteration. Then, the
constitutive model is evaluated in the expanded, or plane-strain stress space. Finally, the
stress vector is compressed such that the condition a.. = 0 is enforced rigorously.
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The composite yield contour is thus expressed in a plane-strain stress space with
6'=!0,.,.0..6..0,!. by the following yield functions:

J’_/\ =(126"Pa) " +12n'6—G,(x)) "
|12 =1(126"Ps0) ~+am'a~ fid:(x)
with the projection matrices P, and P- given by
12 —-12 0 0
~12 12 0 0
P, = (2)
0 0O 0 0
0 0 0 2
and
2 —-1 -1 0
p —1 2 -1 0! 3)
T -1 2 o
0o 0 0 6]
respectively. The projection vectors are given by
= 1.0 4)

respectively. The equivalent stress @, 1s the uniaxial tensile strength as a function of some
internal parameter, say x,. The equivalent stress &. is the uniaxial compressive strength.
which is also expressed as a function of an internal parameter. say ~.. The factor «, can be
related to the ratio between the biaxial compressive strength and the uniaxial compressive
strength. f..

=/
BT o (%)
The factor f is then given by
/i
g=
/ R ®)

A comparison with the experimental data of Kupter and Gerstle (1973) shows that the
assumed yield contour with . = 1.2 closely matches experimental data, Fig. 1.

Assuming small strains, we adopt the additive decomposition of the strain rate vector
& into an elastic, reversible part & and an inelastic part &,

E=E. +i. (7

where the inelastic part & can be considered as irreversible in the case that elastic stiffness
degradation is neglected. The elastic strain rate determines the stress rate through the elastic
stiffness matrix D,
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Fig. 1 Comparison of a Runkine Drucker Prager vield surface with experimental data of Kupfer
and Gerstle (1973)

& =D (8)

The evolution of the inelastic strain rate 1s determined by Koiter’s rule (Koiter, 1953),
which allows for 1 summation of the inelastic strain of each yield function according to

PR S 9)

in which the plastic potential functions ¢, are introduced. The notation ¢,g; is used to
denote the derivative of the function g, with respect to the stress vector ¢. The rate of the
inelastic multipliers », has to comply with the Kuhn Tucker conditions

so20 <0 4 =0. (10)
In this study. the plastic potential functions are assumed to be given by

g, = h
| L9 1 ) (1)
lg: = (1 26'P.6) -+ 2,10 — fG2(K-)
such that we have associated plasticity tor the tensile regime and non-associated plasticity
for the compressive stress regime. The factor z, can be expressed as a function of the
dilatancy angle . according to

25y
e

(12)

:375inu'/'

BEHAVIOR OF PLAIN CONCRETE

The behavior of concrete is highly non-linear due to irreversible processes in the
material caused by debonding and internal cracking. This process of progressive fracturing
results in a descending load-deformation relation at structural level after a limit load has
been reached. To obtain an approach that 1s feasible for analyzing large concrete structures,
a constitutive model should be formulated in a “smeared™ format in which the damaged
material is considered to be a continuum in which the notions of stress and strain apply.
Consequently. the damage in the material should also be considered as distributed. In here,
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it is assumed that the damage can be represented by the internal parameters: x, in tension
and k, in compression. These internal parameters can be considered as damage indicators;
if x, = 0 then there is no damage due to stresses in the regime bounded by the yield surface
f.else there is damage which is implicitly related to the stress state through the yield surfaces.
[t is most appealing to assume that the evolution of the internal variables is given by a
work-hardening hypothesis (WP = ¢" &), which implies that the internal parameters are
determined by the inelastic work rate for the respective yield functions, i.e.

We =% AL, =0y, = 6K )E, (13)

with scalars {, which represent the coupling of the damage in the material at different stress
situations. Obviously. (, is equal to one. With the application of Euler’s theorem of
homogeneous functions, eqns (I11) and (13) result in the following expression for the
evolution of the internal parameters

ity (14)
Setting

q={i} "lz{;il} hz:{

eqn (14) can formally be expressed as

G
! } (15)

N

q= Y 4h,. (16)

/=1

In this way, the evolution of the internal parameters is fully determined by the inelastic
strain rate and can be considered as a measure of the progressive fracturing in the material.
Because a work-hardening hypothesis is underlying eqn (16), it is possible to relate the total
plastic work to the energy dissipation of the material.

For tensile cracking the concept of energy dissipation, the fracture energy G, has been
used extensively in finite element calculations and can be considered as accepted in the
engineering community. With the assumption that the fracture energy is uniformly dis-
sipated in a representative area of the structure, the equivalent length, the finite element
calculations will lead to results that are insensitive with regard to the global structural
response upon mesh refinement, at least below a certain level of refinement. The concept
of released energy and equivalent length is also applied here to model the compressive
softening behavior via the introduction of a compressive fracture energy G. (Willam et al.,
1986 ; Vonk, 1992).

In finite element calculations the equivalent length, A, corresponds to a representative
dimension of the mesh size, as pointed out by many authors (Bazant and Oh, 1983 ; Willam,
1984 ; Rots, 1988 ; Oliver, 1989). The equivalent length at least depends on the chosen
element type, element size, element shape and the integration scheme. In this study it is
assumed that the equivalent length can be related to the area of an element (A4,)

;N ", 12
h=x,4 " = oc,,( Y Y det (J)Mgn',,) (17

c=lp=1

in which w: and w, are the weight factors of the Gaussian integration rule as it is assumed
that the elements are integrated numerically. The local, isoparametric coordinates of the
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(b)

g, 20 Equivalent stress-equivalent strain diagrams : (a) in tension : (b) in compression.

Integration points are given by 7 and 5. and det (J) is the Jacobian of the transformation
between the local. isoparametric coordinates and the global coordinate system. The factor
%, is a modification factor which is equal o one for quadratic elements and equal to /2 for
linear elements (Rots, 1988). For most practical applications the formulation for the
equivalent length. eqn (17). gives 4 good approximation.

In this study a simple exponential softening diagram will be used to model the tensile
stress—-strain relationship. Fig. 2(a). such that the equivalent stress as a function of the
internal damage parameter w| is given by

AR ) = fnCXP(—K | IKy) (18)

and the ultimate damage parameter i), reads

G,
Koy =

) /1}‘:

o

(19)

with /.., the tensile strength of concrete.

The behavior in compression will be modeled with a compression softening model as
defined by the following parabolic equivalent stress-equivalent strain diagram, see Fig.
2(b).

/un [ K> Kg .
(1-47 22 i, <,
3 K. Kl
:050) = ~ o)
(Kr—Ry)" 3 .
‘ /un( [ BN ) if K. < Ky < Koy,
N (o — K, ) /

with /., the mean value of the compressive strength. The maximum compressive strength
will be reached at an equivalent strain x, = k. which is independent of the element size
and reads
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Fig. 3 Simple compression bar with one imperfect element.

4f.
K= 21
E,
where E_ is the Young's modulus of the concrete. The maximum equivalent strain x, 1s
related to the compressive fracture energy G. and the element size 4 and reads

G
Kay = Ko+ 1.3 ' (22)

2u /11\”‘

The compressive fracture energy (. is assumed to be a material parameter for which
experimental evidence has been provided by Vonk (1992).

To demonstrate the mesh insensitivity of the structural response when a compressive
fracture energy is supplied to the model. a simple bar loaded in compression is presented.
The case is similar to the problem of a simple bar loaded in tension (Crisfield, 1982).
Consider the bar of Fig. 3 which is divided into » elements with 7 = 10, 15, 20 and 25. The
following material properties have been assigned: Young's modulus £, = 30,000 MPa.
Poisson’s ratio v = 0.2. #. = 3.0 MPa and a compressive fracture energy G. = | N mm .
One element in the center of the bar has a slight imperfection to trigger the localization:
G, = 2.7 MPa and a compressive fracture energy G, = 0.9 N mm ' The other material
parameters remain the same. The load--displacement response of the bar is depicted in Fig.
4(a) for the energy-based regularization method. 1t is observed from Fig. 4 that the response
is almost independent of the number of elements. The response of the structure with a
constitutive model in which the compressive fracture energy G, does not enter as a separate
material parameter. Fig. 4(b), shows a severe mesh-dependent behavior in the post-peak
regime : the response becomes more brittle with an increasing number of elements.

We conclude this section with a discussion on the coupling between damage due to
compressive loading and damage due to tensile loading. Considering the Kupfer and Gerstle
data, Fig. 1. we observe a reduction of the compressive strength under increasing lateral
compression. A large number of the plasticity models which have been proposed previously
set out to obtain an exact fit of these biaxial data. However. compressive loading results in
fracturing of the material [e.g. van Mier (1984): Vonk (1992)]. which obviously reduces
the tensile strength in the lateral direction. This can be observed in Fig. 1 where the initial
yield surface of Drucker--Prager at an equivalent stress equal to one-third of the maximum
compressive stress is also plotted. If the material is loaded beyond this initial yield surface
and if a coupling as in eqn (16} is present. then the equivalent stress for the Rankine
condition will be reduced even if the tensile stress does not violate the Rankine vield
condition. In fact, not only the maximum tensile strength will be reduced but the model
also provides for a reduction of the tensile fracture energy due to lateral compressive
loading. Because experimental evidence is scarce, the coupling will be neglected in this study
by assuming that J,» = .-, = (.

ALGORITHMIC ASPECTS OF THE CONSTITUTIVE MODEL

The evolution equations in the flow theory of plasticity can be regarded as strain driven
in the sense that the total strain vector. the inelastic strain vector and the internal variables
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Fig. 4. Load -displacement diagrams for a simple compression bar: (a) with energy approach; (b)
without energy approach

are known at time 7, and that the incremental strain vector Ag'* " in the current iteration
(i+ 1) follows from the loading regime. The basic problem in computational elasto-plasticity
is that the elasto-plastic constitutive equations have to be updated in a consistent manner

("0'. /S‘A/q:AEUr H) . (01;-11‘8(1+11’q(1+1))‘

By applying the fully implicit Euler backward algorithm this problem is transformed into
a constrained optimization problem governed by discrete Kuhn—Tucker conditions (Simo
et al.. 1988). Even when the yield surface is highly distorted the Euler backward algorithm
is unconditionally stable and accurate (Ortiz and Popov, 1985; Schellekens and de Borst,
1991) and is therefore well suited for the constitutive model in this study. Application of
the Euler backward algorithm results in a discrete set of equations

g =g+ A

G‘ . :De(gl.el)_atwr\])

g =&+ 3 AT Va gD

@ =g+ Y AL, (23)
o=

subject to the discrete Kuhn-Tucker conditions
Az =00 <0 AT = 0. (24)

Because the algorithm is considered within an elastic predictor—plastic corrector algorithm
an elastic trial state 1s introduced as
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g =g + A"
6" = D¢
q =4q (25)

which can be obtained by freezing inelastic flow during the time step. The Euler backward
procedure now evolves as

o =6 = Y A UD,g
- (26)
q ""=q"+ > A2 Vh
re
For the choice of ¢, as laid down in eqn (11). eqn (26) can be elaborated as
ja’" = A »“:‘af' -~}1 ZA/:.H‘: ]"Dcm —fizlx)/“‘ "D,n,} an
’ qh ={ +A/~"‘ ‘h| +A/,3’ h:
with the matrix A given by
VA ALY
A=1+ y, D.P, ~ jq}:rDCP} (28)
The denominators ¥, and ¥. which occur in egn (28) read
(!\{’11 :0__'\[’\‘1 : ) -1 2711110'“']“ (29)
(¥ =a-(xY V) —ami6""

These expressions are not convenient because the updated stress (""", ¢“*"’) cannot be
related linearly to the trial state (6", ¢"). To obtain a more suitable form we first multiply
o'+ with 77 A (de Borst. 1993) so that

nle' " =nle" 1 24 "niDn, — 2,A/L UnlD, 7., (30)
where the identities n!D.P, = 0' and 2!D.P., = 0' have been used, which follow from the
tacit assumption of isotropic elasticity. By the same argument niD.%, = E/(1—2v) and
niD.m, = 3E/(1 —2v). so that the denominator V. can be expressed solely in terms of the
trial state variables and the inelastic multipliers

1 F
Y., =¢. (" "y—xmlet + -

L=0, 0y A D3, AR, 3

Next, ¥, is determined by premultiplication of " ' with n] A4, so that
T i+ | T 1 NI TR A - T U+1)
ne'" " =ne —1 2A "a Do, — 1, AN ' Do, — 7 n,D.P.o (32)

since n{D.P, = 0'. However. the factor nle is still a function of the final stress because
n D.P, = 2G{1,1,—2.0} with the shear modulus G = E/2(1+v). Substitution of this
relation into eqn (32) results in
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e =nlet — 124" "rlD.x,
A/“*"G 2AZ8FVG
_ 3(UA/ D T — — lP '}'o_(l+|l+ *1_}7 (I+l). (33)
The return-mapping of the stress in the >-direction is given by
o.n+1: =g VﬁAi/(H“ _ IA/A%IEI.“F+ ér’iljthnTo_nwl) ZVA/“»“G (1+I)_
(I =2y) (121 y, ™ ¥,

(34)

The factor m{6" " " is finally obtained by substituting eqn (34) into eqn (33) which results
in

n'll'o_(1+ N} —

Y, +2A24° G . AJCVE 20, A VE
+3A/4+"G( T =2 (1-2v) )

280G CNTVE 9, AMTVE
+ " - (35)
v, L3ANTIG T (l+n(i=2v) (120

With this result the denominators are expressed solely in terms of the trial state variables
and the inelastic multipliers.

Upon substitution of ¢'*" and q"""'"" as given in eqn (27), the yield functions are
expressed solely in terms of the inelastic multipliers A4,. The non-linear constraint equations,
f(6"" ", q“*"), now reduce to a system of scalar equatlons according to

g, (L&/\\vllA/(H“) O
0

V(A2 LA (36)

il

which have to be solved to obtain the final stress state with the additional constraints of
the discrete Kuhn-Tucker conditions, eqns (24).

In softening plasticity, i.e. with negative hardening moduli, it is complicated to identify
in the trial state which yield surfaces are active in the final state. The location of the
intersection between the two yield surfaces is unknown in the beginning of the step and the
initial configuration cannot provide a sufficient criterion for determining which surface is
active at the end of the time step. Simo et «/. (1988) have proposed an algorithm in which
the assumption is made that the number of active yield surfaces in the final stress state is
less than or equal to the number of active yield surfaces in the trial stress state. This implies
that it is not possible that a yield function, in the trial state inactive, becomes active during
the return-mapping. As explained by Pramono and Willam (1989), this assumption is not
valid for softening plasticity. In this study. the approach of Simo er a/. (1988) has been
modified to account for the fact that a yield surface can become active during the return-
mapping. Additional constraints ¢, are introduced, which indicate the status of the yield
functions. Initially the constraints are determined by the violation of the yield criterion in
the trial state, i.e.

it f(et ") >0
C {0 if fietgh) <O

During the return-mapping the active yield functions are determined with conditions
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1 AT S0, >0
ST AT <0 AL <O

These additional constraints are merely introduced for numerical convenience because the
non-linear constraint equations. eqns (36). are now expressed as

fe AL A D (T = AT =0 (37)
LA AT ) (= )AL =0

so that the first two conditions of eqn (24) are enforced simultaneously. The solution of
this system of equations is obtained using a local Newton—-Raphson iteration with a Broyden
update of the Jacobian [e.g. Dennis and Schnabel (1983)]. The success of this approach
depends on the initial Jacobian. which is determined here from the linearization of the yield
functions in the trial state which reads

J" = =0, rTDCL 1+ Lt (38)

With this algorithm it is possible to return to a single active yield surface within a maximum
of approximately 10 iterations in most cases. even if in the trial state more yield conditions
are violated.

" The singular point at the apex in both the Rankine and the Drucker-Prager yield
surfaces is prone to numerical errors because it is casily verified that the denominators ‘P,
as well as W.. see eqn (29). are equal to zero at the apex of the yield surfaces. In the
remainder of this section the analytical solution of the stress update at the singularities will
be given to show the correct limit behavior of the algorithm. Because of the assumption of
isotropic elasticity. it appears that the elastic stiffness matrix D, and the projection matrices
P, and P, have the same eigenvector space. This means that the spectral decomposition is
given by the same transformation matrix. according to

D. = QA,Q'
P, = QA Q'
P. = QA Q' (39)
with the diagonal matrices
Ap = diag[ E . E . E,,,, ,E]
(I4+v) (I+v) (1=2v) 2(14v)

Ap, = diag[0.1.0.2]

Ap. = diag[3.3.0.6] (40)

and the orthogonal matrix

[ 1 -1 1 T
|
SEVA NN
1 | |
Q- 6 2 3" (41)
| NAEENRUN
2 |
0 0
U6 3
t 0 0 0 I

which satisfies Q ' = Q'. The matrix A now simplifies to
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A}_“ 1 w\jml)
A= Q|:[ + Z\IP‘ A\|)/\p‘ + 'Z‘\i‘:‘ A\DAP::|QT (42)

which is easily inverted as:

A'=Q
SR
¥, +3A4,G
Y,
YW, £ P,AL G4 3 ALG Q.

lI"] \I":
YW, + ¥,AL G+ 3T, ALG

(43)

The first situation in which a singularity will be encountered is when the final stress is
at the apex of the Rankine yield function. i.e. 6" = {4,,4,,0,0}. It is easily verified that if
¥, and A4, equal zero, the limit of the mapping matrix is given by

12 12 0 0
. 12 12 0 0
U @
0 0O 0 0
The return-mapping procedure is then given by
1212 0 0
12120 oi| Y @5)
4 c — /202, D7, .
00 1 0 ' ey
]

The second possible situation which may cause numerical problems is the situation
where the final stress is at the apex of the Drucker—Prager yield, i.e. ¥, = 0. Because the
tensile stresses are bounded by the tensile strength, i.e. via the Rankine criterion, this
situation is not likely to occur. More likely to occur is the situation where the equivalent
stress & is reduced to zero. This implies that the apex has been translated to the origin of
the stress space and, consequently. the factor W, is equal to zero. However, this situation
is only possible if for the Rankine vield criterion the equivalent stress also equals zero and
consequently, ¥, = 0. The limit of the mapping matrix is then given by

1313 1300
_ 13 13 13 0
lim A ' = | (46)
W0 T T T O T
Yoo f
000 0

and the return-mapping procedure results in
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13 13 13 0]
13 13 13 ' . .
¢ = te' —12A,, Dy —2,A/,D.m, ). (47)
13 13 13

CONSISTENT LINEARIZATION OF THE STRESS UPDATE

The set of non-linear equations that follow from the finite element discretization will
be solved using the Newton—Raphson method. The non-linear problem is then linearized
in a sequence of iterations until the problem is converged. The linearization of the equations
results in the tangent stiffness matrix which plays an important role in the performance and
robustness of the Newton—-Raphson method. As has been argued by Simo and Taylor
(1985), the quadratic convergence of Newton’s method depends crucially on the consistent
linearization of the stress resulting from the return-mapping algorithm to set up the tangent
stiffness. The consistent tangent stiffness matrix for the Newton—-Raphson procedure is
most conveniently derived from the updated stress at iteration (i + 1)

.

G("“:D.{ﬁtwl'—,&¥ Z A/;'[’w\)(‘.ﬁg’?(. (48)

[S

The total derivative then reads

do" " = Dg{da“‘ Do Y (e dh g+ AT g, da“‘")} (49)
o

L /

which is written as

de' " = H{ds“‘ b Z ¢, dz, f”g}. (50)
= )
where the modified stiffness matrix H 1s given by
H=[C.+A: """ +A20 "89] (51)

Applying the general formulation of Riggs and Powell (1990). the tangent stiffness matrix
1s written for the present case as

de" """ =Hide" ' —Udi (52)
with the matrix U given by
U=[c . fi.c: 9. (53)

and the vectord4 = {dz,.d/.| " collecting the plastic multipliers. The consistency conditions,
f; = 0, for the active yield surfaces give the relations for the inelastic multipliers

0ot do+c, fTdg) 41— )di, = 0. (54)

Substituting the relation dq = Y ¢, d/h, allows recasting of the consistency conditions in
the following format pe



720 P H. Feenstra and R. de Borst

di=E V'de (55)
with
E. = -cg F(,,f',‘ h—(l—¢)o,

where o, 15 the Kronecker delta (no summation implied). The matrix V is given by

V! |:(' (A'r,fq]}
¢ (An‘f}-
Substituting eqn (55) into eqn (52) results in

H '+UE 'V']de" " =dg'" V. (56)

The consistent tangent stiffness matrix can then be calculated with the application of the
Sherman Morrison Woodbury formula :

de* ' = [H -HU(E+VTHU) 'VTH] de"* . (57)

[t 1s noted that if the yield functions are coupled through the hardening functions given in
eqn (16). orif %, # %,. the tangent stiffness matrix is non-symmetric.

APPLICATION TO PLAIN CONCRETE

The first application concerns a cube splitting test which is often used as an indirect
test for determining the tensile strength of concrete. This example has been chosen to
analyze the capability of the developed models to predict the failure mode in a tension—
compression test. The specimen which will be analyzed is a cube with a side of 150 mm.
Only half of the specimen has been discretized because of symmetry conditions, with two
different discretizations in order to show the mesh-insensitivity. The two different meshes
are shown in Fig. 5. the first discretization with 21 x9 cross-diagonal constant strain
triangles with the total number of elements equal to 756. The second discretization concerns
a refinement with a factor nine. resulting in a total number of elements equal to 6804. The
loading platen 1s assumed to be rigid and has been modeled by a equal vertical constraint
of the appropriate nodes. The analyses have been performed using a constrained Newton—
Raphson iteration with line-searches : for details about this advanced solution strategy see
Feenstra (1993).

The material which is considered 1s a concrete with a mean value of the compressive
strength /., = 35 MPa and 1 maximum aggregate size of d,,, = 8 mm. According to CEB-
FIP model code regulations (CEB-FIP model code, 1990) the following material parameters
can be assigned: Young's modulus £, = 32,710 MPa, Poisson’s ratio v = 0.15, tensile
strength /., = 2.7 MPa and a tensile fracture energy G; = 0.06 N mm~'. The CEB-FIP
model code does not supply a relationship for the compressive fracture energy. This
parameter has been chosen as G, = 5.0 N mm

The load versus the displacement of the loading platen is depicted in Fig. 6, from
which two difterent failure mechanisms can be distinguished. First, a splitting crack is
formed at a load level of approximately 30 N mm ™, which is attended with a reduction of
the load. When the crack is fully developed the load starts to increase again, leading to a
collapse mechanism which is governed by a compressive failure.

The detormations are shown in Fig. 7 for the coarse mesh and in Fig. § for the refined
mesh. Both meshes show the same pattern. with the splitting crack occurring in the middle
of the specimen just after the first local maximum in the load—-displacement diagram, Figs
7(a) and (). The final deformutions are shown in Figs 7(b) and 8(b) for the coarse and
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the refined mesh. respectively. In both figures the final failure mode is a combination of the
tensile splitting crack and the compressive failure mode which results in a wedge which is
pushed into the specimen. separating the two parts.

The failure mechanism can also be explained by the distribution of the internal damage
parameters, x, and r-: see Fig. 9. b) for the coarse mesh. The magnitude of the internal
parameters is scaled to the highest value which is shown as solid black. The distribution
just after the first peak load clearly shows the splitting crack in the middle of the specimen

S0
_ coarse mesh
e

. refined mesh

g [N/mm’

[
&4
1

v T T |
0 0.1 0.2 0.3
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Fig o Cube sphtting test. Load deformation diagrams.
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(a)

(b)

Fig. 7. Cube splitting test coarse mesh. Deformations: (a) after first peak load (deformation x 100) ;
(by at final lpad (deformation x 10).

and the more distributed damage parameter related to the compressive regime. In the final
stage also, the distribution of k. localizes in a wedge-like shape under the loading platen.
The results for the refined mesh, Fig. 10(a. b), show this transition even more clearly.

APPLICATION TO REINFORCED CONCRETE

The analysis of shear wall panels is a good example of the possible application of the
composite plasticity model to reinforced concrete. The stress state in the panels can be
considered to be in tension—compression. The panel which will be presented in this study
has been tested at the E.T.H. Ziirich by Maier and Thiirlimann (1985) and has been
analyzed before by Wang er al. (1990). The constitutive model which was used in that study
is a combination of a fixed crack model to describe the tensile stress state and a Mohr—
Coulomb plasticity model to describe the compressive stress states (de Borst and Nauta,
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1985). However. the combination of cracking and plasticity resulted in convergence prob-
lems if a large region existed in which both the cracking and the plasticity model became
active. These numerical problems were solved by defining two areas in which either only
the cracking model or only the plasticity model could become active. The solutions which
were obtained with this approach are 1 good agreement with the experimental results
which indicates that the method is rather effective. The arbitrariness of defining the regions
a priori is a major drawback ot this method. and the analvses with the combined yield
surface presented here show that convergence problems are avoided if a stable algorithm is
used.

The panel which will be analvzed is panel 82 ot the experimental program of Maier
and Thiirlimann (1985). The pancl i~ mitially foaded by a vertical compressive force, and
then loaded by a horizontal torce until the experiment becomes unstable and the failure
load has been reached. In the experimental set-up. the panels were supported on a base
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block and loaded through a thick top slab. Fig. 11(a). In the finite element discretization,
the top slab has been modeled with linear-elastic elements without reinforcement, whereas
the supporung block has been replaced by fixed supports in the v- and y-directions. The
finite clement discretization is depicted in Fig. 11(b) with quadratic plane-stress elements
with & nine-point Guaussian integration for both the reinforcement and the element. The
reinforcement is applied by reinforcing grids in two directions with a diameter of 8 mm and
aclear cover of 10 mm. The reinforcement ratios in the web of the panel are equal to 0.0103
and 0.0116 for the x- and y-directions. respectively. The reinforcement ratio in the flange
of the panel is equal 10 0.0116.

The material properties have been averaged from the experimental data provided by
Thirlimann and Maier (1985) with a reduction of the compressive strength of 20%, which
results in a mean compressive strength /., = 27.5 MPa. According to CEB-FIP model code
regulations (CEB-FIP model code. 1990) the following material parameters have been
assigned: Young's modulus £ = 30.000 MPa. Poisson’s ratio v = 0.15. tensile strength
fom = 2.2 MPa and a tensile fracture cnergy Gy = 0.07 Nmm . The compressive fracture
energy has been chosen as ¢, = 30.0 N mm "

The horizontal and vertical load have been applied as a uniformly distributed element
load as indicated in Fig. 11(b). The horizontal displacement u, of the top slab has been
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monitored and compared with the experimental load displacement curves. The Newton -
Raphson equilibrium iteration has been applied with an indirect displacement controt
method. The displacement in the horizontal direction u, has been chosen as the active
degree-of-freedom with load steps of approximately 0.1 mm. With this solution technique.
converged solutions could be obtained in the complete loading regime.

Panel 82 is subjected to an iniual vertical load of 1633 kN (= 10.0 MPa) which results
in an initial horizontal displacement of 0.29 mm in the experiment. The calculated initial
displacement is equal to =34 % 10 * mm which indicates a possible eccentricity in the
experimental set-up. After the initial vertical load. the horizontal load is applied using
indirect displacement control. The load-displacement diagram is shown in Fig. 12. which
shows a reasonable agreement between experimental and calculated response for both the
coarse and the refined meshes. The experimental failure mechanism was rather explosive
and caused a complete loss of load-carrying capacity tMaier and Thiirlimann. 1985). which
can be explained by the brittle behavior of the pancl atter maximum load. Fig. 12.

Further results of the analysis are shown in Figs 13 15 at the final load. Figure 13
shows the deformation of the panel for both meshes. Apparently. the failure mechanism is
highly localized near the supports. The distribution of the internal parameters x, and & at
the final load 15 shown in Figs 14 and 15 for the coarse mesh and the refined mesh.
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respectively. These figures show that the punel 1s densely cracked with plastic points in the
bottom-left corner of the panel und m the compressive flange.

CONCTUDING REMARKS

A composite vield function has been developed with particular reference to the proper
modeling of tension-compression biaxial stress states in concrete structures. Structural
parts that are stressed under this condition often act as an initiation point for explosive
crack propagation. The main advantage of the implicit algorithm that is based upon this
notion of a4 composite yield function is 1ts robusiness. This has been shown in this con-
tribution for some typical unreinforceed concerete structures, and for a typical “difficult”
case in reinforced concrete tike the shewr wall,
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Fig 13 Pane) §2 Deformations at tinal load (deformation x 10).
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(a)

(b)

Fig. 14, Panel S2. coarse mesh. Distribution of the internal parameters: (a) &y at final load: (b) k»
attinal toad
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(b)

Fig. 15, Panel S2. refined mesh. Distribution of the internal parameters: (a) - at final load ; (b) x-
at final load.
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