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Abstract .\ eomp'blk Iidd funellon " used to desCribe Ihe behal lor of plain and reinforced
concrete In bIaxial stress under monotoniC loadm~ L'ondltions i\ Rankme vield criterion is used to
monitor the in-planc tensIle sHesses and a Druck~r Prager yield function ~()ntrols the compressive
stresses. A good agreement With exrerImental data for bIaxial stress conditIOns in concrete can thus
be obtained. The arproaeh is particularly powcrful for the numerical analysis of concrete structures.
either plain or reinforced. IIhich are predommantly In tcnSlon compression biaxial stress states.
Initiation of cracking m such areas frequently leads III brink. uncontrollable failure (splitting
cracks). which can ,)ften not be handled by eXisting arrroaches The proposed Euler backward
algorithm hased on the c'01l1p(blte vleld fUl1ellon and enhanced hI a conSistent linearization of the
integrated stress sHam relation for use lIilhm a '\Jell ton Ra phs"n 1l1eth,)d at the structural level.
is extre1l1cl\ mhust I','r Ih" rarticular L'IaSS of probknh

I'sTRODl (11()'s

The proper modeling or tension compression biaxial stress states in plain and reinforced
concrete is an outstanding issue lt1 fimte element analysis of concrete structures that is of
utmost practical importance and very challenging at the same time. It is important for
engineering practice. since such stress states frequently occur in critical regions and crack
initiation under such stress conditions often acts as a precursor to progressive and brittle
collapse of concrete structures. Examples are shear-critical beams in the case of reinforced
concrete and splitting tests in the case of plain concrete structures. The proper modeling of
this phenomenon is challenging because different inelastic mechanisms playa role under
such stress conditions. For Instance. ifone adopts a crack model to bound the tensile stresses
and a plasticity model to monitor the evolution of the compressive stresses, simultaneous
satisfaction of a fracture criterion and a yield function must be achieved.

In the first applications oftinite clement analysis to the mechanical behavior of concrete
a sudden drop to a zero stress level was adopted upon violation of the tensile strength
(Rashid. 1968). Similarly. it was assumed that concrete lost its complete strength and
stiffness when the compressive strength was exceeded Soon. careful experiments using
servo-controlled equipment revealed that this crudc assumption did not resemble the real
behavior of concrete. since a descending branch \\as observed in tension (Riisch and
Hilsdorf. 1963: H ordiik. 1(91) as \\ ell as in corn prcssion (van "vtier. 1984: WiJlam et aI.,
1(86). For this reason "softening" stress stram relations were adopted, in which the stress
was made a descending function of the straIn and the clement size such that the total
energy dissipation upon complete failure became independent of the finite element mesh.
(Pietruszczak and "vtrl)L In1: Bazant and Oh. 198"1, WiJlam. 1(84). It is recognized that
this "energy" approach gives in an ill-posed boundary value problem. which tends to result
in crack propagation that is biased by the grid lines of the discretization (Sluys. 1992: de
Borst et aI., 19(3) Nevertheless. the method is used here because it is simpler than proper
regularization procedures like non-local or gradient approaches [for a review of these
procedures. see de Borst l'1 al (]993 )]. so it can readily be used for obtaining practical,
engineering solutions. Its SImplicity also bears the advantage that attention can be focused

;'('Llrr~nth ,It T's() 1l1i1Id"l~ :illd ("I"ll'llC,Il)[l RL"L·,tn, I:. RII'""k. lire ,"cthnlands
':.\Is""I Findl"",'n I nil ,'1'''1\ ,'I le,ltn"I"cl I ,Intlt\ ,,!\k,ltllnIL',,1 Fngilleering
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on the difficulty that during progressive softening a fracture criterion for the tensile behavior
and a yield function for the compressive softening behavior have to be met identically.

In the approach by de Borst and Nauta (1985), this issue was solved using a local
procedure at integration point level in which cracking and plasticity were treated in an
iterative fashion. such that during the computation of the plastic flow the cracking strain
increment was treated as an initial strain increment, and subsequently the fracture strain
increment was updated while freezing the computed plastic flow increment, etc. Although
this procedure has been applied successfully in a number of calculations, numerical diffi­
culties with state changes have also been reported (Crisfield and Wills, 1989), especially in
plane-stress situations.

In this contribution we shall discuss a composite yield function, in which the behavior
in compression as well as that in tension is modeled using a plasticity approach. A Rankine
(principal stress) yield criterion is used to limit the tensile stresses and a Drucker-Prager
yield contour is employed to model the compression-eompression regime in biaxial stress.
It turns out that this composite yield contour closely matches the classical Kupfer and
Gerstle data (1973). The fact that both tensile and compressive failures are now modeled
using a plasticity-based concept has the advantage that the "corner" regime, that is where
both yield contours intersect. can be handled using established concepts from computational
plasticity (de Borst. 1986; Simo et £II.. 1988). Using the Koiter (1953) generalization for
plastic flow at a corner in the yield contour. a robust Euler backward integration algorithm
can be devised, including the associated consistently linearized tangent stiffness matrix for
use within Newton's method.

A drawback of the plasticity-based approach is that the stiffness degradation due to
progressive damage is not modeled. However, experimental evidence shows that the stiffness
degradation due to tensile cracking is substantial only when the tensile cracking has
developed fully (Willam et al.. 1986: Hordijk. 1991). The stiffness degradation due to
compressive loading is even less pronounced than the stiffness degradation due to tensile
loading. Since full cyclic loading is not considered in this study, only monotonic loading
where only local unloading occurs. neglecting the degradation of the elastic stiffness does
not seem to entail major errors.

We shall start this paper by formulating the composite yield surface. Then, we will
discuss the behavior of plain concrete. thereby focusing attention on the softening behavior
in tension and in compression. The equivalent uniaxial stress-strain relations for tension
and compression that have been adopted are discussed. In both cases a fracture energy has
been defined in order to achieve a reasonable degree of discretization insensitivity in
numerical calculations. Next. the algorithmic aspects of the model are discussed and the
derivation of the linearization moduli will be given. Some illustrative examples of a splitting
test and reinforced shear wall panel conclude the discussion.

[t is recognized that plasticity-based crack models have been advocated before [e.g.
Willam and Warnke (1975): Chen and Chen (1975); Buyukozturk (1977); Murray et al.
(1979)], but the present enhancements with a second fracture energy parameter that controls
the (gradual) compressive softening and the robustness of the algorithm presented here are
considered to be major steps forward.

FORMLLATIOl\" OF A CO\1POSITE YIELD SURFACE

In this study. we shall utilize a composite yield contour which bounds the admissible
stress states such that a Rankine yield function. denoted asfI. is used to model the tension­
tension region and a Drucker Prager yield function, say fl' is employed to bound the
compressive stresses. The model will be formulated in a plane-strain configuration and the
plane-stress condition, (J~~ = O. will be enforced by applying a compression/expansion
algorithm (de Borst. 1991). In this algorithm, the strain vector is expanded by including
the normal strain in the constrained direction in the beginning of an iteration. Then, the
constitutive model is evaluated in the expanded. or plane-strain stress space. Finally, the
stress vector is compressed such that the condition (lee = 0 is enforced rigorously.
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The composite yield contour is thus expressed in a plane-strain stress space with
11

1 = :G", G'l' G" G,,:, by the following yield functions:

J/I = (I 20- 1
P,I1)1 = + I :27t 1

0--0'1 (hi)

Lt: = (1 :2o-Tp:o-) I : +1,7t 1
0- /10',(h:)

with the projection matrices PI and P: given by

2 -I ,
0 0-

2 I ' 0 0
PI

0 0 0 0

0 0 0 :2

and

, -I 0-
-1 :2 0

P:=
-I ~- I ,

0

0 0 0 6

respectively, The projection vectors are gIven by

: L LO,O:

1t! :LLLO:,

(1)

(2)

(3)

(4)

respectively, The equivalent stress 0'1 is the uniaxial tensile strength as a function of some
internal parameter, say 1\1' The equivalent stress 0':, is the uniaxial compressive strength.
which is also expressed as a function of an internal parameter. say 1\" The factor at can be
related to the ratio between the biaxial compressive strength and the uniaxial compressive
strength, /lc'

(5)

The factor /1 is then given by

(6)

A comparison with the experimental data of Kupfer and Gerstle (1973) shows that the
assumed yield contour with f1, = 1.2 elosely matches experimental data, Fig. I.

Assuming small strains, we adopt the additive decomposition of the strain rate vector
e into an elastic. reversible part ee and an inelastic part (,

(7)

where the inelastic part ec can be considered as irreversible in the case that elastic stiffness
degradation is neglected. The elastic strain rate determines the stress rate through the elastic
stiffness matrix Dc
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(8)

The evolution of the inelastic straIn Lite IS determined by Koiter's rule (Koiter, 1953),
which allows for a summation of the Inelastic strain of each yield function according to

(9)

in which the plastic potential functions {/ are introduced. The notation (\{/i is used to
denote the derivative of the function (/ with respect to the stress vector a, The rate of the
inelastic multipliers ;./ has to comply with the Kuhn Tucker conditions

() /:S () ; /, = O.

In this study. the plastIC potentlal tunctlOth an: assumed to be given by

I II, = Ii

1(1. = II 2a l P,al l
. T :i'/rr~a~ f5if c(h' c)

(10)

(11)

such that we have associated plasticlt) for the tensile regime and non-associated plasticity
for the compressive stress regime. The factor :iii can be expressed as a function of the
dilatancy angle 1jJ. according to

2sinljJ

3-sint/J'

BfH\\IOR 01 PLAI" COl\CRETE

(12)

The heha \ior of concrete is highly non-linear due to irreversible processes in the
material caused by dehonding and Illternal cracking. This process of progressive fracturing
results in a descending load· deformation relation at structural level after a limit load has
been real:hed. To obtain an approach that is feasible for analyzing large concrete structures,
a l:onstitutive model should he formulated in a "smeared" format in which the damaged
material is considered to he a contllluum in which the notions of stress and strain apply.
Consequently. the damage in the material should also be considered as distributed. In here,
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it is assumed that the damage can be represented by the internal parameters: K) in tension
and K2 in compression. These internal parameters can be considered as damage indicators;
if K , = 0 then there is no damage due to stresses in the regime bounded by the yield surface
t; else there is damage which is implicitly related to the stress state through the yield surfaces.
It is most appealing to assume that the evolution of the internal variables is given by a
work-hardening hypothesis U-VP = (JT i;P). which implies that the internal parameters are
determined by the inelastic work rate for the respective yield functions, i.e.

(13)

with scalars e" which represent the coupling of the damage in the material at different stress
situations. Obviously, C is equal to one. With the application of Euler's theorem of
homogeneous functions. eqns (II) and (13) result in the following expression for the
evolution of the internal parameters

Setting

K=I
(14)

eqn (14) can formally be expressed as

q = I/.,hr
I~ 1

(15)

(16)

In this way. the evolution of the internal parameters is fully determined by the inelastic
strain rate and can be considered as a measure of the progressive fracturing in the material.
Because a work-hardening hypothesis is underlying eqn (16), it is possible to relate the total
plastic work to the energy dissipation of the material.

For tensile cracking the concept of energy dissipation, the fracture energy Gr, has been
used extensively in finite element calculations and can be considered as accepted in the
engineering community. With the assumption that the fracture energy is uniformly dis­
sipated in a representative area of the structure, the equivalent length, the finite element
calculations will lead to results that are insensitive with regard to the global structural
response upon mesh refinement, at least below a certain level of refinement. The concept
of released energy and equivalent length is also applied here to model the compressive
softening behavior via the introduction of a compressive fracture energy Gc (Willam et al.,
1986: Yonk, 1992).

In finite element calculations the equivalent length, h, corresponds to a representative
dimension of the mesh size, as pointed out by many authors (Bazant and Oh, 1983; Willam,
1984: Rots, 1988: Oliver, 1989). The equivalent length at least depends on the chosen
element type, element size, element shape and the integration scheme. In this study it is
assumed that the equivalent length can be related to the area of an element (A e)

'n II. )1 '
II = ::t"A~ 2= ::th( .. f i det (J)H:W" -

'- -= 1'1 = 1

(17)

in which w: and H"I are the weight factors of the Gaussian integration rule as it is assumed
that the elements are integrated numerically. The local, isoparametric coordinates of the



712 I' H. fccthtra dnd R. de Borst

Tel
Tel fl

(a)

0"2

j~'m

fern
3

Te2
Tee Te2u

(b)

II~ Equl\,licnt strcss-cqul\aIc111 stram diagran,,' (a) in tension: (b) in compression.

integratlon points arc given by ~ and 11. and det (J) is the Jacobian of the transformation
between the local. isoparametric coordinates and the global coordinate system. The factor
1./, is a modification factor which is equal to one for quadratic elements and equal to J2 for
linear elements (Rots. 1988). For most practical applications the formulation for the
equivalent length. eqn ( 17). gives a good approximation.

In this study a simple exponential softening diagram will be used to model the tensile
stress--strain relationship. Fig. 2('1). such that the equivalent stress as a function of the
internal damage parameter 1\", is given b)

and the ultimate damage parameter 1\, , reads

(18)

/\ III

G,

h(",'
(19)

with/eLnl the tensile strength of concrete
The behavior in compression will be modeled with a compression softening model as

defined by the following parabolic equivalent stress-equivalent strain diagram. see Fig.
2(b).

l

fc" ( I -
( 1\, - 1\, ):: )

l h 2u -- he) /

(20)

with fU\1 the mean value of the compressivc strength. The maximum compressive strength
will be reached at an equivalent strain ": = }\"c which is independent of the element size h
and reads
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(21 )

where Ec is the Young's modulus of the concrete. The maximum equivalent strain "eLi is
related to the compressive fracture energy G. and the element size h and reads

(22)

The compressive fracture energy G, is assumed to be a material parameter for which
experimental evidence has been provided by Yank (1992).

To demonstrate the mesh insensitivity of the structural response when a compressive
fracture energy is supplied to the model, a simple bar loaded in compression is presented.
The case is similar to the problem of a simple bar loaded in tension (Crisfield, 1982).
Consider the bar of Fig. 3 which is divided into /I clements with n = 10, 15, 20 and 25. The
following material properties have been assigned. 'to oung's modulus Ec = 30,000 MPa.
Poisson's ratio \ = 0.2. Gc = 3.0 MPa and a compressive fracture energy Gc = I N mm I.

One element in the center of the bar has a slight imperfection to trigger the localization:
6" = 2.7 MPa and a compressive fracture energy G, = 0.9 N mm I. The other material
parameters remain the same. The load displacement response of the bar is depicted in Fig.
4(a) for the energy-based regularization method. It is observed from Fig. 4 that the response
is almost independent of the number of elements. The response of the structure with a
constitutive model in which the compressive fracture energy Gc does not enter as a separate
material parameter. Fig. 4( b), shows a severe mesh-dependent behavior in the post -peak
regime: the response becomes more brittle with an increasing number of elements.

We conclude this section with a discussion on the coupling between damage due to
compressive loading and damage due to tensile loading. Considering the Kupfer and Gerstle
data, Fig. I. we observe a reduction of the compressive strength under increasing lateral
compression. A large number of the plasticity models which have been proposed previously
set out to obtain an exact fit of these biaxial data. Hc)\\ever. compressive loading results in
fracturing of the material [e.g. van Mier (1984): Vonk (1992)]. which obviously reduces
the tensile strength in the lateral direction. This can be observed in Fig. 1 where the initial
yield surface of Drucker Prager at an equivalent stress equal to one-third of the maximum
compressive stress is also plotted. If the material is loaded beyond this initial yield surface
and if a coupling as in eqn (16) is present. then the equivalent stress for the Rankine
condition will be reduced even if the tensile qress does not violate the Rankine yield
condition. In fact, not only the maximum tensile strength will be reduced but the model
also provides for a reduction of the tensile fracture energy due to lateral compressive
loading. Because experimental evidence IS scarce. the coupling will be neglected in this study
by assuming that ~I' = ~=I = O.

\lGORITH\,IIC\SP!CTS 01 THI (O"STITl TIVE \-IODEl

The evolution equations 10 the flow theory of plasticity can be regarded as strain driven
in the sense that the total stram vector. the inelastic ,tram vector and the internal variables
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Fig. 4. Load-displacement diagrams for a sImple compression bar: (al with energy approach; (b)
wIthout energy approach

are known at time " and that the Incremental strain vector .1e(i+ I) in the current iteration
(i + I) follows from the loading regime. The basic problem in computational elasto-plasticity
is that the elasto-plastic constitutive equations have to be updated in a consistent manner

By applying the fully implicit Euler backward algorithm this problem is transformed into
a constrained optimization problem governed by discrete Kuhn-Tucker conditions (Simo
et at" 1988). Even when the yield surface is highly distorted the Euler backward algorithm
is unconditionally stable and accurate (Ortiz and Popov, 1985; Schellekens and de Borst,
1991) and is therefore well suited for the constitutive model in this study. Application of
the Euler backward algorithm results in a discrete set of equations

q q + L .1/.;" I ih,
, ~ I

(23)

subject to the discrete Kuhn Tucker conditions

(24)

Because the algorithm is considered within an elastic predictor-plastic corrector algorithm
an elastic trial state is introduced as
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(25)

which can be obtained by freezing inelastic flow during the time step. The Euler backward
procedure now evolves as

a' . I, = a l .- ILl;.: ' I 'DJ~q:'+ II

I

(26)

q . I, = ql + I ~~;.:. Ilh,
I

For the choice ofq, as laid down in egn (II). egll (20) can be elaborated as

(a l
"" = A I :al

.. ·1 2Ll;.II· 'D,.1tI-:x,/l;S-IIOe1t:}

I q" 1'=ql+Ll;.II'·lhl+Ll;.~+llh:

with the matrix A given by

The denominators If', and If': which occur in egll (2S) read

(27)

(28)

(If' I = (f I (",'I' . I )

'/ If': = (f .. ("'~ I,)

1 l1t:a l
' II

x,1t;a"rl
(29)

These expressions are not convenient because the updated stress (a lt + II, q(i+ IJ) cannot be
related linearly to the trial state (ai, qL). To obtain a more suitable form we first multiply
al,+IJ with 1tIA (de Borst. 1993) so that

(30)

where the identities 1tiDcP I = oj and 1tiDcP: = 0 1 have been used, which follow from the
tacit assumption of isotropic elasticity. By the same argument 1tiOe1tJ = E/(I- 2v) and
1tiDe1l:: = 3£:( 1- lv), so that the denominator If'. can be expressed solely in terms of the
trial state variables and the inelastic multipliers

(31 )

Next, If'I is determined by premultiplicatioll of ai' I with 1t; A, so that

(32)

since 1tTDeP I = Ol However. the factor 1tTa is still a function of the final stress because
1tTOeP: = 2G: J. I. -2. OJ with the shear modulus G = £:2(1 + v). Substitution of this
relation into egn (32) results in
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The return-mapping of the stress in the .::-direction is given by

fl.)S+ I'vE
(T"/ I J = (T;E - (T+ v)(i-=- 2\')

(34)

The factor 1t:0''' + I, is finally obtained by substituting eqn (34) into eqn (33) which results
In

(35)

With this result the denominators are expressed solely in terms of the trial state variables
and the inelastic multipliers.

Upon substitution of a ll + II and ql'T II as given in eqn (27), the yield functions are
expressed solely in terms of the inelastic multipliers fl.),,. The non-linear constraint equations,
t;(O'Il + I I, qll+ I I), now reduce to a system of scalar equations according to

f/I U~i.ll· ~ Ii, fl.)~ t II) = 0

'v' (fl.i'i , I. fl.),';' I') = 0
(36)

which have to be solved to obtain the final stress state with the additional constraints of
the discrete Kuhn-Tucker conditions, eqns (24).

In softening plasticity, i.e. with negative hardening moduli, it is complicated to identify
in the trial state which yield surfaces are active in the final state. The location of the
intersection between the two yield surfaces is unknown in the beginning of the step and the
initial configuration cannot provide a sufficient criterion for determining which surface is
active at the end of the time step. Simo et al. (1988) have proposed an algorithm in which
the assumption is made that the number of active yield surfaces in the final stress state is
less than or equal to the number of active yield surfaces in the trial stress state. This implies
that it is not possible that a yield function, in the trial state inactive, becomes active during
the return-mapping. As explained by Pramono and Willam (1989), this assumption is not
valid for softening plasticity. In this study, the approach of Simo et al. (1988) has been
modified to account for the fact that a yield surface can become active during the return­
mapping. Additional constraints c; are introduced, which indicate the status of the yield
functions. Initially the constraints are determined by the violation of the yield criterion in
the trial state, i.e.

\ I
c, -

10
if t;(O'L,qF) > 0

if f(aE,qE):( O·

During the return-mapping the active yield functions are determined with conditions
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if ili;" I > 0 vii> 0

if ili;" I, < 0 1\ I, < 0

These additional constraints are merely introduced for numerical convenience because the
non-linear constraint equations. eqns (36). are now expressed as

IcJd ili,'" II.iliS· 11)+( I-ci )!li,'i' II = 0

/c 21,(ili II.ili~'I»)+(1 ce)ili.~+I) =0
(37)

so that the first two conditions of eqn (24) are enforced simultaneously. The solution of
this system ofequations is obtained using a local Newton-Raphson iteration with a Broyden
update of the Jacobian [e.g. Dennis and Schnabel (1983)]. The success of this approach
depends on the initial Jacobian. which is determined here from the linearization of the yield
functions in the trial state which reads

(38)

With this algorithm it is possible to return to a single active yield surface within a maximum
of approximately 10 iterations in most cases. even If III the trial state more yield conditions
are violated .

. The singular point at the apex in both the Rankine and the Drucker-Prager yield
surfaces is prone to numerical errors because it is easily verified that the denominators \}I I

as well as \}Ie' see eqn (29). are equal to zero at the apex of the yield surfaces. In the
remainder of this section the analytical solution of the stress update at the singularities will
be given to show the correct limit behavior of the algorithm. Because of the assumption of
isotropic elasticity. it appears that the elastic stiffness matrix De and the projection matrices
PI and Pc have the same eigenvector space. This means that the spectral decomposition is
given by the same transformation matrix. according to

Dc = QAI,Q'

PI = QAI'QI

Pc = QApQI

with the diagonal matrices

lEE E E J
All = diag L(I +v)' (I +\). (1----2~;) '2(1 +v)

/\1'1 = diag [0. 1. O. 2]

.\1' = diag [3. 3. O. 6]

and the orthogonal matrIX

-- I
0

,,/6 , 2
"

3
1 I I

Q
0

= ,,/6 2 \, 3,
2 I

0 0
,/6 \, 3
0 0 0

which satisfies Q I = Qj. The matrix A now simplifies to

(39)

(40)

(41 )
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(42)

which is easily inverted as:

\fI:
------

\fI 2 + 3L1/. 2 G

\fI 1\f1 2
-----_ .._------

\fI] \fI 2 + \fI 2 L11.] G + 3\fI ]L1i. =G

(43)

The first situation in which a singularity will be encountered is when the final stress is
at the apex of the Rankine yield function, i.e. 0'T = {O' 1'0' 1,0, O}. It is easily verified that if
\fI 1 and L1/.: equal zero, the limit of the mapping matrix is given by

I 2 1 2 0 0

lim A
I 2 I 2 0 0

'f'I--+(J 0 0 I 0
() () 0 0

(44)

The return-mapping procedure is then given by

I 2 I ') () 0-
I 2 2 () 0

(J(lt 1) = :0'1-I;2L1i.]De 1t d·
() () 1 ()

0 () () 0

(45)

The second possible situation which may cause numerical problems is the situation
where the final stress is at the apex of the Drucker-Prager yield, i.e. \fI 2 = O. Because the
tensile stresses are bounded by the tensile strength, i.e. via the Rankine criterion, this
situation is not likely to occur. More likely to occur is the situation where the equivalent
stress 0': is reduced to zero. This implies that the apex has been translated to the origin of
the stress space and, consequently. the factor \fI: is equal to zero. However, this situation
is only possible if for the Rankine yield criterion the equivalent stress also equals zero and
consequently, \fI] = O. The limit of the mapping matrix is then given by

~ 3 13 0

~ 3 13 0
lim A ]

'f'I-->O ~ I 3 13 0
~' . .]1

() () () 0

(46)

and the return-mapping procedure results in
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(47)

CO'JS1STEl\iT LI'JEARIZATION OF THE STRESS lPDATE

The set of non-linear equations that follow from the finite element discretization will
be solved using the Newton-Raphson method. The non-linear problem is then linearized
in a sequence of iterations until the problem is converged. The linearization of the equations
results in the tangent stiffness matrix which plays an important role in the performance and
robustness of the Newton-Raphson method. As has been argued by Simo and Taylor
(1985), the quadratic convergence of Newton's method depends crucially on the consistent
linearization of the stress resulting from the return-mapping algorithm to set up the tangent
stiffness. The consistent tangent stiffness matrix for the Newton-Raphson procedure is
most conveniently derived from the updated stress at iteration (i + J)

(48)

The total derivative then reads

which is written as

da" . I, = H {d~IJ' I _ f (' d' c 1
fi ~I ' I., ( ~g,r

where the modified stiffness matrix H is given by

(49)

(50)

(51)

Applying the general formulation of Riggs and PO\\l~ll (1990). the tangent stiffness matrix
is written for the present case as

(52)

with the matrix l given by

(53)

and the vector dA = :d;", d;'2) T collecting the plastic multipliers. The consistency conditions,
i; = 0, for the active yield surfaces give the relations for the inelastic multipliers

(54)

Substituting the relation dq = L (, d/,h, allows recasting of the consistency conditions in
the following format I
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with
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di, = E VI du (55)

where (i is thl' Kronecker delta (no summation implied). The matrix V is given by

Substituting cljn (55) into eqn (5~) results in

[H '+LJE IV1jdu';-II=dsu • I1 . (56)

The consistent tangent stiffness matnx can then be calculated with the application of the
Sherman Morrison Woodbury formula:

(57)

It is noted that if the yield functions are coupled through the hardening functions given in
eljn (16). or if '1; i= '1". the tangent stitli1ess matrix is non-symmetric.

,\PPLICATION TO PLAIN CONCRETE

Thl' !irst application concerns a cube splitting test which is often used as an indirect
test for dl'tl'rmining the tensile strength of concrete. This example has been chosen to
analyze the capability of the developed models to predict the failure mode in a tension­
compression test. The specimen which will be analyzed is a cube with a side of 150 mm.
Only half of the specimen has been discretized because of symmetry conditions, with two
different discretizations in order to show the mesh-insensitivity. The two different meshes
are shown in Fig. 5. the first discretization with 21 x 9 cross-diagonal constant strain
triangles with the total number of elements equal to 756. The second discretization concerns
a refinement with a factor nine, resulting in a total number of elements equal to 6804. The
loading platen is assumed to be rigid and has been modeled by a equal vertical constraint
of the appropriate nodes. The analyses have been performed using a constrained Newton­
Raphson iteration with line-searches: for details about this advanced solution strategy see
Feenstra (1993).

Thl' material which is considered is a concrete with a mean value of the compressive
strength = 35 \:IPa and a maximum aggregate size of dmax = 8 mm. According to CEB­
FIP model code regulations (eEB-FIP model code, 1990) the following material parameters
can be assigned' Young's modulus E, = 32,710 MPa, Poisson's ratio v = 0.15, tensile
strength = 2.7 MPa and a tensile fracture energy Gr = 0.06 N mm- I

. The CEB-FlP
model code dol'S not supply a relationship for the compressive fracture energy. This
parameter has bel'n chosen as (J, = 5.0 N mm

The ll)ad versus the displacement of the loading platen is depicted in Fig. 6, from
which two ditferent failure mechanisms can be distinguished. First, a splitting crack is
formed at a load level of approximately 30 N mm- c, which is attended with a reduction of
the load. When the crack is fully developed the load starts to increase again, leading to a
collapse mechanism whieh is governed by a compressive failure.

ThL' deformations are shown in Fig. 7 for the coarse mesh and in Fig. 8 for the refined
mesh. Both meshes show the same pattern, with the splitting craek occurring in the middle
of the specimen just after the first local maximum in the load-displacement diagram, Figs
7(a) and Sea) The final deformations are shown in Figs 7(b) and 8(b) for the coarse and
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l'iO

WI

symmetry

l'iO

Ib)

Fig hlllic Ck'lllCI:', 111,',1,,', 1"1 .1 dille' ,plJt\tllg Ic,1 l r,"'cd trJdllgular clements: (a) coarse mesh:
(hi r"tillcd 1l11',I,

the refined mesh. respeclt\c1~, In both hgures the lin,t! failure mode is a combination of the
tensile splitting crack and the compressi\C failure Illode which results in a wedge which is
pushed into the specimen. separatll1g the t\\O parh,

The failure mechanism can also be explained b~ the distribution of the internal damage
parameters, /"1 and 1,: see Fig, 9(a. b) for the coarse mesh, The magnitude of the internal
parameters is sealed to the highest \alue \\hlch i, shown as solid black. The distribution
just after the hrst peak load clcarh ,110\\' the ,phlting crack in the middle of the specimen

()

• coarse mesh
/

/ .
J"" / refined mesh

~

(I 0, 1 U,2 0.3

vertical displacement
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(a)

---r--..... ~
(T1'

T"\

'J.-I..
I I

"-...

(b)
Fig. 7. Cube sphtlmg test coarse mesh Deformations: (a) after first peak load (deformation x 100);

(bl at final load (deformation x 10).

and the more distributed damage parameter related to the compressive regime. In the final
stage also. the distribution of K2 localizes in a wedge-like shape under the loading platen.
The results for the refined mesh. Fig. 10(a. bl. show this transition even more clearly.

APPLICATION TO REINFORCED CONCRETE

The analysis of shear wall panels is a good example of the possible application of the
composite plasticity model to reinforced concrete. The stress state in the panels can be
considered to be in tension-{;ompression. The panel which will be presented in this study
has been tested at the E.T.H. Ziirich by Maier and Thiirlimann (1985) and has been
analyzed before by Wang et al. (1990). The constitutive model which was used in that study
is a combination of a fixed crack model to describe the tensile stress state and a Mohr­
Coulomb plasticity model to describe the compressive stress states (de Borst and Nauta,
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(a)

(b)
Fig. X. Cube 'riJttln~ IL',! 'c'! 'lc'ti !llc',11 [>eI"Ill].,ll"ll' "i 'j",1 pc,lk l,'ad (deformation x 100):

Ibl dlllll;tlln,ld Idl'I\lrllLI1]('t' 1111

1985), However. the combin<ttiol1 01" cracking ~md plchticitv resulted in convergence prob­
lems if a large region existed in which both the cracking and the plasticity model became
active, These numerical problems were sol\ed h\ detining two areas in which either only
the cracking model or 0111~ thc pla~tlctly ll1odl'll','uld hCClllllC active. The solutions which
were obtained with this approdch arc 111 good agrccmcnt \\ith the experimental results
which indicates that the mcthod is rather etfecti\ c Thc arhitrariness of defining the regions
a priori is a major drawback of this method. cllld thc analyses with the combined yield
surface presented here shO\\ tha t convergence probkm~ a rc a \oided if a stable algorithm is
used,

The panel whIch \\ill bc an<tl\/cd i~ pancl S~ ,>I the l'xperimental program of Maier
and Thtirlimann (19~~1 Thl' panl'! h Il1ltl,,11\ !""ded h\ a \crtical compressive force, and
then loaded by a horilOlltal rOln' until thc expnill1l'111 bccomes unstable and the failure
load has been readled 111 the' "\I,,:rJlnellLti ~CI-l!I) tli l ' p.mels \vere supported on a base
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I!e '.I I III,,' 'P"-'"l.'! test ,'oarse I11l·sh. DIstnhutlon Ill' the internal parameters' ta) I.! after first

l'c'''1, 1-'.".1. ih) It' after lirsr peal, load: (ci I, at final load : (d) It, at lin:t1load

hlod dnd loaded thr'lligh a thick top slab. Fig. Il(a), In the finite element discretization,
the top slah has been modeled with linear-elastic elements without reinforcement. whereas
the supporting hlod has heen replaced by fixed supports in the ,Y- and r-directions. The
finite clement discretization is depicted in Fig. II (b) with quadratic plane-stress elements
\\ ith ,I nine-point Gaussian integration for both the reinforcement and the element. The
reinforcement lS dpplied by reinforcttlg grids in two directions with a diameter of 8 mm and
a clear cover llf 10 mm. The reinforcement ratios in the web of the panel are equal to 0.0103
and 00116 for the .\- and r-directions. respectively. The reinforcement ratio in the flange
of the panel is eq ual to 0.0116.

The material properties have heen averaged from the experimental data provided by
Thilrlimann and Maier (1985) with a reduction of the compressive strength of 20%, which
results in a mean compressive strcngth(m = 27.5 MPa. According to CEB-FIP model code
regulations (CEB-FIP model codc. 1990) the following material parameters have been
assigned: Young's modulus 1:, ==~O.OOO MPa, Poisson's ratio r = 0.15. tensilc strength
I,u" = 2.2 \1Pa and ,I tensile fracture energy G, = 0.07 N mm I. The compressive fracture
energ) has been choscn as G. = SO.O '\j mm '.

The horizontal and vertical load have been applied as a uniformly distributed element
load as indicated tl1 Fig. 11 (b). The horizontal displacement Uh of the top slab has been



(a)

(c)

(b)

(d)
l--ig I() Cuhc srliulng ll'-..t refined lll('~h DistnhutlC'n llj :11l' ~111,-'1 n~d ;1:11.[1 ll" I,') l ;tt'kr tir,t

pcak I«(ad. (hi I, :tflcr lir,' pcak Illad. Ic" I, a1111LI p.ld Idi I· al lalll'ad

monitored and compared \\ Ith the experimental lUcid displacement l'urves. The "Jewton
Raphson equilibrium iteration has been applied \\!th an indirect displacement control
method. The displacement III the horizontal direction 11 11 has been chosen as the active
degree-of-freedom with load steps of approximately ll,l mm, With this solution technique,
converged solution~ could be obtained in the complete loading regime.

Panel S2 is subjected to an Il1Itlal vertical load of 165.\ kN (= 10,0 MPa) which results
in an initial horizontal displacement of 0,29 mm in the C\periment. The calculated initial
displacement is equal to --·54;, III ! mm \\hich indIL'dlC~ a possible eccentricity in the
experimental set-up. After the initial vertical load. the horizontal load is applied using
indirect displacement control. The load displacement diagram is shown in Fig. 12. which
shows a reasonable agreement between experimental and calculated response for both the
coarse and the rdined meshes. The experimental failure mechanism was rather explosive
and caused a complete loss of load-carrying capacity I Maier and ThUrlimann, 19R5). which
can be explained by the brittle behavior of the panel after maximum load. Fig. 12.

Further resulh of the analysis are shown in Figs 13 15 at the tinal load. Figure 13
shows the deformation of the panel for both meshe~. Apparently, the failure mechanism is
highly localized ncar the supports. The distribution of the internal parameters }\'I and I\~ at
the lin~rI load " shm\ n In Figs 14 and 15 for the coarse mesh and the rdined mesh.
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Fl~ II Expenmental ,el-up "nd 111111" c'k'l1lc'!i! dlSl'Icluallon of shear wall panel 52 (Maier and
I hllrhl1lann, \c)X,)

respectively, These ligures shtm IILII thl' pelnel i~ densely cracked with plastic points in the
bottom-left corner of the panel ~lI1d 'I] 1he l'nmpn:ssive flange,

(II", I I 1l1,\(; RI\I.\RKS

A composite :- idd funct to I] hel' hccn dL:\c1oped wi th particular reference to the proper
modeling of tension {;OmptTSSl(ln hlaxlal ~tress states in concrete structures. Structural
parts that are stressed under tIll' l'cl\1dnion nften act as an initiation point for explosive
crack propagation, The main eI(h~llJtdt:l' (If the implicit algorithm that is based upon this
notion of a composite yield functl<,n J', lh robLhtness. This has been shown in this con­
tribution for some typical unreinf(lrcl'd c(l\1cn:tl' structures. and for a typical "difficult"
case in reinforced concrete like :Ill' ,ill:~lr \Iall.
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(a)

(b)
Fig 14 Panel S~" ,'oarse mesh [)hlrlhull"1l 1)1 the' Internal rarameters: la) /,", at linalload: (b) K,

,II lindl IUdd



(a)

- (b)
Fig l:i. Panel S2. rdincd ll1e,11 J)1'lnbulllll1 of thl' Inll'IILill'Clrall1l'lch: (a I" Cil tinalload, Ih) I,.

at timtll(),ld
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4dilIi1l/"dl/<,I)/"ill.1 rhc calculations h'l\C hccn earned out with a pilot version of the J)JA:'-IA finite element code.
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